Title of Document: ENGINEERING BIODEGRADABLE VASCULAR SCAFFOLDS FOR CONGENITAL HEART DISEASE
نویسندگان
چکیده
Title of Document: ENGINEERING BIODEGRADABLE VASCULAR SCAFFOLDS FOR CONGENITAL HEART DISEASE Anthony J Melchiorri, Doctor of Philosophy, 2015 Directed by: John P. Fisher, Ph.D., Fischell Family Distinguished Professor Fischell Department of Bioengineering The most common birth defects worldwide are congenital heart defects. To treat these malformations in a child’s cardiovascular system, synthetic grafts have been used as a primary intervention. However, current grafts suffer from deficiencies such as minimal biological compatibility, inability to grow and adapt, and high failure rates. Additionally, the grafts are not customized to the patient, which may lead to graft failure given that defects may vary significantly from patient to patient. The work presented here aims to adapt tissue engineering paradigms to develop customizable vascular grafts for congenital heart defects using to reduce the long-term risk and the number of surgeries experienced by patients. The first component of this research focuses on solvent-cast vascular grafts. This system of fabrication was used to explore how various strategies and graft modifications affect the graft’s performance in vivo. Grafts were fabricated with the mechanical properties necessary to withstand the stresses of a physiological environment and support neotissue formation. To improve tissue formation, the grafts were modified with bioactive molecules to improve vascular tissue growth. In addition, the grafts were combined with a tissue perfusion bioreactor. The bioreactor applied fluid flow to support cell seeding, differentiation, and growth of endothelial progenitor cells on the grafts, demonstrating a robust strategy for tissue formation prior to implantation. The second component of this research centers on the development of a biomaterial for 3D printing. 3D printing offers unparalleled customizability, as a graft can be designed based on medical images of a patient, tested via computer modeling, and then printed for implantation. A resin was developed consisting to produce grafts that were mechanically compatible with native blood vessels and maintained patency and tissue formation six months after implantation. The library of 3D printed vascular graft materials was also expanded by creating a novel copolymer resins, which varied in mechanical properties and degradation profiles. In addition, the concepts and strategies of biofunctionalization developed in the solvent-cast vascular grafts can be combined with the 3D printed graft strategies. Grafts designed, printed, and modified using these combinatorial approaches can greatly improve the longterm outcomes of treating congenital heart disease. ENGINEERING BIODEGRADABLE VASCULAR SCAFFOLDS FOR CONGENITAL HEART DISEASE
منابع مشابه
Development of a Tissue-Engineering Vascular Graft for Use in Congenital Heart Surgery
Congenital cardiac anomalies represent the most common birth defect affecting nearly 1% of all live-births. Severe forms of congenital heart disease are life-threatening and require surgical intervention. Despite significant advances in the surgical and medical management of this disease, it remains a leading cause of death in the newborn period and lifelongmorbidity for survivors. One signific...
متن کاملTissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again.
Since the first tissue-engineered vascular graft (TEVG) was implanted in a child over a decade ago, growth in the field of vascular tissue engineering has been driven by clinical demand for improved vascular prostheses with performance and durability similar to an autologous blood vessel. Great strides were made in pediatric congenital heart surgery using the classical tissue engineering paradi...
متن کاملImplantation of inferior vena cava interposition graft in mouse model.
Biodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are often used for reconstructive surgery to treat congenital cardiac anomalies. The long-term clinical results showed excellent patency rates, however, with significant incidence of stenosis. To investigate the cellular and molecular mechanisms of vascular neotissue formation and prevent stenosis development in tissue eng...
متن کاملCellular therapy and myocardial tissue engineering: the role of adult stem and progenitor cells.
Acquired cardiovascular diseases and complex congenital heart diseases are leading causes of morbidity and mortality. Cellular therapy and tissue engineering are emerging as promising alternative approaches to treat cardiovascular diseases. Cellular therapy involves isolating cells and delivering the cells to the site of cardiac injury to restore blood flow and contractility to previously infar...
متن کاملThe Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering
Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...
متن کامل